Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
preprints.org; 2024.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202210.0223.v3

ABSTRACT

Abstract: The SARS-CoV-2 pandemic has reemphasized the urgent need for broad-spectrum antiviral therapies. We developed a computational workflow using scRNA-Seq data to assess cellular metabolism during viral infection. With this workflow we predicted the capacity of cells to sustain SARS-CoV-2 virion production in patients and found a tissue-wide induction of metabolic pathways that support viral replication. Expanding our analysis to influenza A and dengue viruses, we identified metabolic targets and inhibitors for potential broad-45 spectrum antiviral treatment. These targets were highly enriched for known interaction partners of all analyzed viruses. Indeed, phenformin, an NADH:ubiquinone oxidoreductase inhibitor, suppressed SARS-CoV-2 and dengue virus replication. Atpenin A5, blocking succinate dehydrogenase, inhibited SARS-CoV-2, dengue virus, respiratory syncytial virus, and influenza A with high selectivity indices. In vivo, phenformin showed antiviral activity against SARS-CoV-2 in a Syrian hamster model. Our work establishes host metabolism as druggable for broad-spectrum antiviral strategies, providing invaluable tools for pandemic preparedness.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.03.565419

ABSTRACT

SARS-CoV-2 typically utilises host angiotensin-converting enzyme 2 (ACE2) as a cellular surface receptor and host serine protease TMPRSS2 for the proteolytic activation of viral spike protein enabling viral entry. Although macrophages express low levels of ACE2, they are often found positive for SARS-CoV-2 in autopsied lungs from COVID-19 patients. As viral-induced macrophage inflammation and overwhelming cytokine release are key immunopathological events that drives exacerbated tissue damage in severe COVID-19 patients, insights into the entry of SARS-CoV-2 into macrophages are therefore critical to understand COVID-19 pathogenesis and devise novel COVID-19 therapies. Mounting evidence suggest that COVID-19 pathogenesis is associated with apoptosis, a type of programmed cell death that often leads to the release of numerous large extracellular vesicles (EVs) called apoptotic bodies (ApoBDs). Here, we showed that ApoBDs derived from SARS-CoV-2-infected cells carry viral antigens and infectious virions. Human monocyte-derived macrophages readily efferocytosed SARS-CoV-2-induced ApoBDs, resulting in SARS-CoV-2 entry and pro-inflammatory responses. To target this novel ApoBD-mediated viral entry process, we screened for ApoBD formation inhibitors and discovered that T-type voltage-gated calcium channel (T-channel) blockers can inhibit SARS-CoV-2-induced ApoBD formation. Mechanistically, T-channel blockers impaired the extracellular calcium influxes required for ApoBD biogenesis. Importantly, blockade of ApoBD formation by T-channel blockers were able to limit viral dissemination and virus-induced macrophage inflammation in vitro and in a pre-clinical mouse model of severe COVID-19. Our discovery of the ApoBD-efferocytosis-mediated viral entry reveals a novel route for SARS-CoV-2 infection and cytokine storm induction, expanding our understanding of COVID-19 pathogenesis and offering new therapeutic avenues for infectious diseases.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.18.160614

ABSTRACT

Coronaviruses, including SARS-CoV-2, encode multifunctional proteases that are essential for viral replication and evasion of host innate immune mechanisms. The papain-like protease PLpro cleaves the viral polyprotein, and reverses inflammatory ubiquitin and anti-viral ubiquitin-like ISG15 protein modifications1,2. Drugs that target SARS-CoV-2 PLpro (hereafter, SARS2 PLpro) may hence be effective as treatments or prophylaxis for COVID-19, reducing viral load and reinstating innate immune responses3. We here characterise SARS2 PLpro in molecular and biochemical detail. SARS2 PLpro cleaves Lys48-linked polyubiquitin and ISG15 modifications with high activity. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. We further exploit two strategies to target PLpro. A repurposing approach, screening 3727 unique approved drugs and clinical compounds against SARS2 PLpro, identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors were able to inhibit SARS2 PLpro with high potency and excellent antiviral activity in SARS-CoV-2 infection models.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL